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In this paper I show that the free energy F and the cost C associated to a bipar-
tite matching problem can be explicitly estimated in term of the solution of a
suitable system of equations (cavity equations in the following). The proof
of these results relies on a well known result in combinatorics: the Van der
Waerden conjecture (Egorychev–Falikman Theorem). Cavity equations, derived
by a mean field argument by Mèzard and Parisi, can be considered as a
smoothed form of the dual formulation for the bipartite matching problem.
Moreover cavity equation are the Euler–Lagrange equations of a convex func-
tional G parameterized by the temperature T. In term of their unique solution it
is possible to define a free-energy-like function of the temperature g(T). g is a
strictly decreasing concave function of T and C=g(0). The convexity of G
allows to define an explicit algorithm to find the solution of the cavity equations
at a given temperature T. Moreover, once the solution of the cavity equations at
a given temperature T is known, the properties of g allow to find exact estimates
from below and from above of the cost C.
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1. INTRODUCTION

A bipartite matching problem is defined as follows: given a N×N square
matrix Ai, j with nonnegative elements one is interested to minimize

C
i
Ai,Pi (1.1)

on the set of all the permutation P=P1,...,PN of the first N integers.



This problem has many applications.
For example there are N jobs, i=1, 2,..., N and N workers j=

1, 2,..., N. The cost of the assignment of the job i to the worker j is Ai, j,
and one has to assign to any worker a job in such a way that the total cost
is minimum.
Alternatively, given N+N points in a square: xi: i=1,..., N, and yj:

j=1,..., N, one is interested to couple any point xi to another point yj in
such a way that the sum of the pair distances is minimized. In this case
we obtain a bipartite problem (generally called Euclidean Matching) and
Ai, j=|xi−xj |a, for some a \ 1.
The bipartite matching is a widely studied problem in graph theory

and fast algorithms have been obtained to solve it (see, e.g., ref. 1). These
algorithms are based on the dual formulation for this problem which is
briefly recalled here. This is a classical result in combinatorics (see, e.g.,
ref. 2).
Let pi: i=1, 2,..., N, and qj: j=1, 2,..., N, the 2N be dual variables.

Then C(A) is the maximum of

C
N

i=1
pi+C

N

j=1
qj (1.2)

when the variables p and q satisfy the N2 constraints pi+qj [ Ai, j.
In a series of paper Mèzard and Parisi consider the random bipartite

matching problem. In this case the entries of the matrix Ai, j are i.i.d.
random variables extracted from the uniform distribution in [0, 1]. Here
the crucial point is the determination of the average value OCP of C(A) on
the ensemble of matricies A.
For b \ 0 they define the partition function

ZN, b=C
P

e−b ; i Ai,Pi (1.3)

and

FN, b=−
1
b
log ZN, b (1.4)

Obviously

lim
bQ.

FN, b=C(A) (1.5)
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Then, using the replica approach, (3) they are able to find an analytical
expression for OCP in the mean field limit NQ.. More precisely they find
OCPQ p2/6 as NQ..
In ref. 4 they have confirmed this result using a cavity approach, while

in ref. 5 their result has been numerically tested. Rigorous constructive
bounds of OCP have been given in ref. 2, while D. J. Aldous, (6) with an
ingenious construction, has definitively proven that OCPQ p2/6 as NQ..
Moreover in ref. 7 Parisi conjectured that in the case in which the

entriees of the matrix are extracted from the exponential distribution
e−x dx, the average value is CN=;N

k=1 1/k
2 for any N !

In this paper I will show that thanks to the Van der Waerden conjec-
ture (proved by Egorychev (8) and by Falikman (9)) it is possible to estimate
FN, b from above and from below in terms of the solutions of the cavity
equations proposed by Mèzard and Parisi in ref. 4.
Moreover these equations are satisfied on the unique minimum ḠN, b,

of a convex function of 2N real variables GN, b parametrized by b.
The cost of the bipartite matching problem can be recovered from the

solution when T=0, where T=1
b
is the temperature.

More precisely defining g(T)=NT−TḠN, 1
T
, it turns out thatC=g(0).

Furthermore g can be considered as a free energy. In particular g is a
strictly decreasing concave function of the temperature T.
Finally, in this way, it is possible to recover the usual dual formulation

for this problem as TQ 0.
From my perspective the most relevant result here is the definition of

the one parameter (b) family of relaxed problems and their ‘‘thermodyna-
mical’’ properties.
By using this construction, it is possible to define numerical algorithms

to solve the problem.
In fact in order to obtain g(T) one has to find the minimum of a

convex function of 2N real variables. Moreover the monotonicity and
concavity of g(T) allows us, once that the solution at a certain T is known,
to estimate from above and from below the cost g(0).
The algorithms I propose here does not seem particularly good and

probably their performance is comparable to that of the simplex method.
Anyway it may be that proceeding along this line it is possible to obtain
better results.
The outline of the paper is as follows. In Section 2 I define the cavity

equation and their relation with the partition function. In Section 3 I define
the function g, and I discuss its properties. Finally in Section 4 an algo-
rithm to solve the matching problem, based on this formalism, is defined
and numerically tested.
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2. CAVITY EQUATIONS AND VAN DER WAERDEN CONJECTURE

The partition function for a bipartite matching problem defined in
(1.3) can be written as the permanent of the N×N matrix M defined by
Mi, j=e−bAi, j.
In fact the permanent Per(M) of a matrix M is defined as the sum on

all the permutations, P=P1,...,PN, of the first N integers P of the
productMi,Pi .
Notice that the permanent is defined as the determinant, except for the

signs of the permutations, omitted in the permanent.
The Van der Waerden conjecture states that if a N×N matrix with

nonnegative entries is such that the sum of its elements in any row and in
any column is 1 then its permanent can be estimated from below by N!

NN
,

while the estimate from above is obviously 1.
By multiplying the i th row of the matrix M by si and its jth column

by tj (for any i and for any j) one finds the matrix

Li, j=Mi, jsitj=e−bAi, jsitj (2.2)

If the quantities si and tj satisfy the equations

si=
1

;j e−bAi, jtj
: i=1, 2,..., N

tj=
1

;i e−bAi, jsi
: i=1, 2,..., N

(2.1)

then the matrix L satisfies the hypothesis of the Van der Waerden conjec-
ture. Therefore Per(L) can be estimated as said above.
Equations (2.1) are exactly the cavity equations proposed by Mèzard

and Parisi in ref. 4, on the basis of a mean field argument.
From

Per(L)=Per(M) D
N

i=1
si D

N

j=1
tj (2.3)

one obtains

N!
NN

1
<N
i=1 si <N

j=1 tj
[ Per(M)=Z [

1
<N
i=1 si <N

j=1 tj
(2.4)
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Taking the logarithm of both members in (2.4) and dividing by b one
finds

1
b
log 1D

N

i=1
si D

N

j=1
tj 2 [ FN, b [

1
b
log
NN

N!
+
1
b
log 1D

N

i=1
si D

N

j=1
tj 2 (2.5)

Notice that N!
NN
does not depend on b, therefore in the limit bQ. its

contribution to the estimate is negligible.
More precisely, by recalling that N!

NN
\ e−N, one gets that FN, b is

estimated in terms of the solution of the cavity equations with an error
bounded by N

b
.

Finally, from e−bC [ ZN, b [N!e−bC and Eq. (2.4) one gets

1
b
log 1D

N

i=1
si D

N

j=1
tj 2 [ C [

N logN
b

+
1
b
log 1D

N

i=1
si D

N

j=1
tj 2 (2.6)

In particular

C= lim
bQ.

1
b
log 1D

N

i=1
si D

N

j=1
tj 2 (2.7)

3. A FREE-ENERGY-LIKE FUNCTIONAL

In order to study the cavity equations it is convenient to introduce the
variables si: i=1, 2,..., N, and yj: j=1, 2,..., N, defined by

si=ebsi: i=1,..., N

tj=ebyj: j=1,..., N
(3.1)

The cavity equations (2.1) become

e−bsi= C
j=1, N

Mi, jebyj,

e−byj= C
i=1, N

Mi, jebsi
(3.2)

It is easy to check that the Eqs. (3.2) are satisfied on the stationary
points of the following functional:

GN, b=−b 1 C
N

i=1
si+C

N

j=1
yj 2+C

i, j
Mi, jeb(si+yj) (3.3)
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Moreover one can notice that GN, b is invariant for si Q si+a for
any i, and yj Q yj−a for any j.
It is therefore convenient to define GN, b on the set (it is a vector space)

I=3s1,..., sN, y1,..., yN : C
i=1, N

si− C
j=1, N

yi=04 (3.4)

On this set GN, b is convex.
Notice that the first addend of GN, b,

G (1)N, b=−b 1 C
N

i=1
si+C

N

j=1
yj 2 (3.5)

is linear while the second

G (2)N, b=C
i, j
Mi, jeb(si+yj) (3.6)

is the sum of N2 terms of the formMi, jeb(si+yj) whereMi, j > 0. Since any of
these terms is convex their sum is convex.
Finally the strict convexity of GN, b, can be easily checked. This means

that, for fixed b, there exists a unique solution of the cavity equations
s̄1,..., s̄N, ȳ1,..., ȳN.
Let us denote with ḠN, b, Ḡ

(1)
N, b, Ḡ

(2)
N, b the values of GN.b, G

(1)
N.b, G

(2)
N.b, on

the solution, respectively, and let us notice that on the solution it holds
G (2)N, b=N.
For our purposes it is convenient now to introduce the temperature

T=1
b
and a new free energy g(T).

Definition. Given T > 0 we define g(T) as

g(T)=
N
b
−ḠN, b

where

b=
1
T

Notice that it holds

g(T)=C
N

i=1
s̄i+C

N

j=1
ȳj
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For sake of simplicity I have omitted in g the explicit dependence
upon N.
Now I will easily prove the following results.

Theorem 3.1.

(i) For T > 0 g(T) is a regular decreasing concave function, and its
derivative, −S, is given by

dg
dT

— −S=−C
i, j

(Ai, j− s̄i− ȳj)
T

exp 5−Ai, j− s̄i− ȳj
T
6

(ii) limTQ 0 g(T)=C;
(iii) g(T) [ g(0)=C [ g(T)+T S(T).

Point (ii) is a consequence of Eq. (2.6).

(i) Since GN, b is a strictly convex function of s1,..., sN, y1,..., yN, for
any T > 0, then there exist the regular functions s̄1(T),..., s̄N(T), ȳ1(T),...,
ȳN(T).
One can therefore compute the derivative of g with respect to T, given

by −S. S is positive because is the sum of positive terms. In fact, on the
solution,

s̄i=−
1
b
log 1 C

N

j=1
e−b(Ai, j − ȳj)2 [ (Ai, l− ȳl) for any i, l

and therefore Ai, j− s̄i− ȳj \ 0 for any i, j.
It remains to prove that g is a concave function of T.
The concavity of g follows by its definition and the fact that GN, 1

T
, is a

convex function of the 2N+1 variables s1,..., sN, y1,..., yN, T. In fact the
term −(;N

i=1 si+;N
j=1 yj) is linear, while the second term is the sum of N

2

terms of the form e−(Ai, j −si −yj)/T and any of these terms is a convex function
of its three variables si, yj, T. This can be explicitly checked by evaluating
the 3×3 Hessian of this function.
Finally (iii) is a consequence of (i) and (ii). L

Remarks.

1. g(T) can be interpreted as a free energy while S=− dgdT can be
interpreted as an entropy. The analogy can be strenghtened by noticing
that S can be written as

S=−C
i, j
pi, j log pi, j
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where the variables pi, j=e−b(Ai, j − s̄i − ȳj): i, j=1,..., N, are nonnegative and
satisfy ;i pi, j=1 for any j, ;j pi, j=1 for any i.

2. Let us notice that for bQ. one easily recovers, from this for-
mulation, the dual formulation defined with Eq. (1.2) by defining qi=si,
pi=yi.

4. NUMERICAL ALGORITHMS

In this section I consider some possible algorithms to solve the bipar-
tite matching problem based on the formulation introduced above.
First of all I introduce an algorithm, Algorithm A, to find the solution

of the cavity equations at a given temperature T. In term of this solution it
is possible to estimate from above and from below the cost C of the bipar-
tite matching problem.
Then I consider an algorithm, Algorithm B which allows to find the

solution of the bipartite matching problem starting close to it.
In terms of these two algorithm it is possible to define a simulated

annealing algorithm to find the solution of the bipartite matching problem:
Algorithm C.
Finally I discuss the numerical results I have obtained by using this

algorithm for the random matching problem defined by Mèzard and Parisi,
and I make some comments.
Let us now recall that the cavity equations are solved on the minimum

of the convex functional GN, b.
A possible way to minimize GN, b is given by the following algorithm.

Algorithm A. Starting with yj=0 for any j, one iterates the following
steps:

(i) si Q −
1
b
log 1 C

N

j=1
e−b(Ai, j − yj)2 (4.1)

(ii) yj Q −
1
b
log 1 C

N

1=1
e−b(Ai, j −sj)2 (4.2)

In any of these operations GN, b decreases except when the solution of
the problem has been already reached. In fact the minimum of GN, b, when
the variables y1,..., yN are fixed is given by (4.1), while the minimum of
GN, b, when the variables s1,..., sN are fixed, is given by (4.2). In this way
one can find the solution ḠN, b.
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Once the solution (a reasonable approximation of it) is found one can
compute g(T) and S(T), see Theorem 3.1, obtaining the estimates

g(T) [ C [ g(T)+TS(T)

Obviously the complete solution can be recovered only when T=0,
but in this case the functional G is not convex anymore and then the pre-
vious algorithm cannot be used to find it.
Let us now recall an important consequence of the dual formulation of

the bipartite matching problem.

Algorithm B. Let y1,..., yN be given. For any i let us consider a
column ji such that Ai, j−yj is minimum. If ji defines a permutation, i.e.,
if do not exist two rows coupled to the same i, then one has found the
optimal assignment which is given by i− ji: i=1,..., N.

This can be easily proved. Indeed the matrix B, defined as Bi, j=
Ai, j−si−yj, has nonnegative entries. Therefore its cost is nonnegative. But
the assignment i− ji has a cost 0 therefore the matrix B has a cost 0, and
the optimal assignment for B is i− ji. Finally let us notice that the optimal
assignment is invariant for the operation Ai, j Q Ai, j−si−yj.
Therefore a possible strategy to solve the bipartite matching problem

is the following one. One solves the problem with Algorithm A for a suffi-
ciently small temperature T and then one checks whether, on the basis of
this solution, it is possible to find the solution of the bipartite matching
problem by means of Algorithm B.
This method is not efficient since the lower is T the slower is the con-

vergence of the Algorithm A.
Therefore it seems natural to consider a simulated annealing algo-

rithm. The algorithm I propose and test here is the following one.

Algorithm C. Starting with b=0, (T=.), and yj=0, for any j,
one iterates the following steps:

(i) one change b of a constant rate Db: bQ b+Db, and performs
one step of Algorithm A;

(ii) one checks with Algorithm B if the solution is reached;
(iii) if not, one goes back to step (i).

Remarks.

(1) AlgorithmA does not preserve;N
i=1 si−;N

j=1 yj=0. This problem
can be overcome by adding to the algorithm the step si Q si−a: i=
1,..., N, yj Q yj+a: j=1,..., N, where a=

1
2N (;

N
i=1 si−;N

j=1 yj).
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(2) The solution of the cavity equations are regular functions of b
(see Theorem 3.1). By taking the derivative of the solution with respect to b
one gets, with a little algebra, the following differential equation.

d
db
s̄i(b)=Si(s̄1,..., s̄N, ȳ1,..., ȳN, b): i=1,..., N

d
db
ȳj(b)=Tj(s̄1,..., s̄N, ȳ1,..., ȳN, b): j=1,..., N

(4.3)

S1,..., SN, T1,..., TN satisfy

Si+C
N

j=1
Ri, jTj=−

s̄i

b
: i=1, .., N

Tj+C
N

i=1
Ri, jSi=−

ȳj

b
: j=1, .., N

(4.4)

togheter with the condition

C
N

i=1
Si− C

N

j=1
Tj=0 (4.5)

where Ri, j=e−b(Ai, j − s̄i − ȳj).
Therefore a possible simulated annealing algorithm for this problem

consists in solving numerically the previous equation starting with a small
value of b.
Notice that, for Db small, Algorithm C essentially follows the solution

of (4.3).

I have tested Algorithm C on the random matching problem studied
by Mezard and Parisi. (3, 4) In this case the natural scale for b is N. (3) In this
test I have chosen Db=bN, where b= 1

10 , and I have considered values of
N between 10 and 200.
The average number of steps required to solve the problem seems to

be less than O(N), also if sometimes one needs only a few steps, and some-
times the algorithm spend an huge amount of time to find the solution.
Taking into account that any step consists of O(N2) operations this algo-
rithm seems to spend less than O(N3) operations to find the solution of the
problem.
The large fluctuations in the performance of the algorithm are pro-

bably due to the fact that sometimes the problem is degenerate or quasi-
degenerate. For example, in the case in which the matrix A is the null

866 Caglioti



matrix, all the permutations have the same value. In this case the Algo-
rithm B is not a good algorithm to find a solution. Nevertheless the esti-
mate from above and from below of the cost converge to the cost and the
variables s1,..., sN, y1,..., yN, converge to a solution of the dual problem.
Finally a comment. Algorithm B does not seems particularly good and

probably its performance is comparable to that of the simplex method.
As I have said in the Introduction I think that the most interesting

result of this paper is the definition of a new formalism for the bipartite
matching problem based on the introduction of suitable convex functions.
I do not know if it is possible to define better algorithm to solve the

bipartite matching problem based on this formalism.
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